Crispr-Cas9: Wie die Gen-Schere unsere Welt verändern soll

ThemaMedizin

Crispr-Cas9: Wie die Gen-Schere unsere Welt verändern soll

Bild vergrößern

DNS-Forschung: Genwerkzeug Crispr-Cas9 erobert Pharma- und Agrarbranchen.

von Susanne Kutter und Yvonne Esterházy

Im Turbotempo erobert das neue Genwerkzeug Crispr-Cas9 die Pharma- und Agrarbranche. Milliarden fließen in Therapien, Pflanzenzucht und Start-ups. Was sie mit dem mächtigen Werkzeug vorhaben.

Seit Montag ist Kathy Niakan weltberühmt. Und versteckt sich doch. Als die britische Human Fertilisation and Embryology Authority der Stammzellforscherin erlaubte, menschliche Embryonen genetisch zu manipulieren, schickte sie einen Kollegen zur Einordnung der Entscheidung vor. Die Forscherin vom Londoner Francis Crick Institute selbst arbeitete an diesem Tag seelenruhig an zwei wissenschaftlichen Aufsätzen weiter und war abends in den TV-Nachrichten nur anonym im Hintergrund zu sehen: eine Frau im weißen Kittel mit dichtem schwarzem Lockenschopf, die sich über ein Mikroskop beugte.

Dabei wird Niakan als erste Europäerin in die menschliche Keimbahn eingreifen – ins Erbgut eines Ungeborenen, das er an all seine Nachkommen weitergibt. Wenn auch nur zu Forschungszwecken. Sie wird dabei mit der spannendsten Technik am Biotechfirmament arbeiten: einer Genschere namens Crispr-Cas9. Damit lässt sich das Erbgut so einfach wie nie kürzen, längen und umschreiben. Auch wenn die Forscherin das weder vorhat noch es ihr erlaubt wäre: Die Technik ermöglicht gentechnisch optimierte Babys und, zu Ende gedacht, das Neudesign des Lebens.

Anzeige

Die Entwicklung der Gentherapie

  • 1990

    Es ist der erste offiziell genehmigte Gentherapieversuch: French Anderson behandelt am Nationalen Gesundheitsinstitut der USA die vierjährige Ashanti DeSilva. Sie leidet an einem angeborenen Immundefekt (SCID) und muss in einem Isolierzelt leben, um sich vor Erregern zu schützen. Die von Viren in Ashantis Zellen transportierten Gene helfen. Zugleich bricht eine Debatte los, ob Genreparaturen an Embryonen verboten werden sollen.

  • 1992

    In Europa behandelt Claudio Bordignon am Mailänder San Raffaele Telethon Institute for Gene Therapy SCID-Kinder erfolgreich per Gentherapie. Der Erwartungsdruck wächst.

  • 1999

    Der 18-jährige Jesse Gelsinger stirbt bei einem Gentherapieversuch am Humangenetischen Institut der University of Pennsylvania. Er litt an einer milden Form einer erblichen Stoffwechselkrankheit und hatte sich als Freiwilliger gemeldet. Das Immunsystems seines Körper reagierte so heftig auf die Genfähre, dass er an Multiorganversagen starb. Im Nachhinein wurde klar, dass die Reaktion absehbar gewesen war, Studienleiter James Wilson ihn aber trotzdem behandelte. Der verlor seinen Job als Institutsdirektor, die Universität bezahlte 500.000 Dollar Strafe.

  • 2000

    Alain Fischer und Kollegen behandeln am Necker Hospital in Paris SCID-Kinder. Der Immundefekt ist damit behoben, aber bei einigen der jungen Patienten aktiviert die Genfähre ein Krebsgen, sie erkranken an Leukämie. Ein Kind stirbt daran. Die Ärzte können die anderen Betroffenen retten, diese sind auf Dauer von ihrem Immundefekt geheilt.

  • 2003

    China lässt die Therapie der Sibiono GeneTech, Shenzhen, zu. Sie bringt das Wächtergen p53 in Krebszellen, was diese in den Selbstmord treibt.

  • 2008

    Die texanische Biotech-Firma Introgen zieht ihren Antrag für eine p53-Therapie bei der europäischen Zulassungsbehörde (EMA) zurück, weil ihr die Insolvenz droht. Der britische Anbieter Ark Therapeutics zieht den Antrag für eine andere Krebstherapie zurück. Die EMA war nicht zu überzeugen, dass die Vorteile der Behandlung deren Risiken überwiegen.

  • 2012

    Die EMA lässt mit Glybera die Gentherapie der niederländischen Uniqure gegen eine seltene Stoffwechselkrankheit zu.

  • 2015

    Glybera kommt in Deutschland auf den Markt. Preis: eine Million Euro.

Der Aufschrei der Empörung gegen die Erlaubnis ist groß. Kirchen, Politiker, selbst Stammzellforscher wie Hans Schöler, Direktor des Max-Planck-Instituts für molekulare Biomedizin in Münster, warnen: „Diese Forschung öffnet eine Tür.“ Dass solche Eingriffe nicht durchgeführt würden, sei internationaler Konsens gewesen. Doch die britische Behörde will Großbritannien als Vorreiter bei der Crispr-Technik positionieren. Denn es ist längst weltweit ein Wettstreit darüber entbrannt, wer die Rechte an dieser gerade erst dreieinhalb Jahre alten Technologie ergattert: um mit ihr lukrative neue Therapien gegen Krebs oder die Bluterkrankheit zu entwickeln oder um Pflanzen und Nutztiere zu verändern, sodass sie höhere Erträge bringen. Mit ersten derartigen Produkten rechnen Brancheninsider bereits in drei bis fünf Jahren. Acht Jahre wird es dauern, schätzen Optimisten, bis Menschen mit Crispr-Hilfe ihre Herz-Kreislauf-Probleme in den Griff bekommen.

Ein Forscher-Trio hält die Fäden in der Hand

Viele dieser Ziele verfolgen Gen-Ingenieure schon seit Jahrzehnten. Doch mit Crispr geht alles schneller und einfacher. Deshalb verbünden sich große Life-Science-Konzerne wie Bayer, Novartis, AstraZeneca oder Dupont gerade mit Start-ups, die Zugriff auf die Patente für die Technik haben. Zwei dieser Shootingstars drängen dieses Jahr an die Börse. Konzerne und Investoren pumpen Milliardensummen in die neue Technik.

„Wenn alles funktioniert, könnten wir Krankheiten behandeln oder sogar heilen, die wir bisher mit konventionellen Medikamenten nur mühsam in Schach halten“, verkündet Bayer-Innovations-Vorstand Kemal Malik. Was eine völlig neue Qualität in der Pharmaentwicklung wäre. Malik räumt aber auch ein, die Gefahr zu scheitern sei in diesem frühen Stadium noch sehr groß.

Mensch 2.0 - Welche Techniken und Implantate uns besser leben lassen

  • Besser hören

    Ein Mikrochip im Innenohr (38.000 Euro) lässt Taube wieder hören.

  • Stimmung steuern

    Hirnschrittmacher (ab 31.000 Euro) senden elektrische Impulse ins Gehirn, um epileptische Anfälle, das Zittern von Parkinson-Kranken und Depressionen zu heilen.

  • Berührungslos greifen

    Ein Chip erfasst Nervenreize. Denkt ein Proband "Greifen", kann er eine Prothese fernsteuern.

  • Magnetismus spüren

    Werden kleine Magnete unter die Haut der Fingerkuppen implantiert (200 Euro), können Menschen elektromagnetische Felder wahrnehmen.

  • Lähmung überwinden

    Mit einer vollelektronischen Orthese (60.000 Euro) können Menschen gelähmte Gliedmaßen wieder benutzen.

  • Natürlich gehen

    Mikroelektronik in modernen Prothesen (30.000 bis 40.000 Euro) kontrolliert und steuert innerhalb von Millisekunden die Position des Kunstbeins beim Gehen, Rennen oder Treppensteigen.

  • Schneller rennen

    Mit superleichten Karbonfedern (8.000 Euro) spurten Sportler besser als mit normalen Fußprothesen.

  • Schmerzfrei leben

    Implantate nahe dem Rückenmark (etwa 20.000 Euro) stoppen die elektrischen Nervensignale - und damit das Schmerzempfinden.

  • Gesund verdauen

    Elektronische Schrittmacher kontrollieren die Funktion von Magen, Blase und Darm (ab 14.400 Euro).

  • Kraftvoll zupacken

    Der Brustmuskel wird in mehrere Segmente unterteilt, mit denen Arm und Kunsthand präzise gesteuert werden (60.000 Euro).

  • Länger leben

    Schrittmacher (ab 5.100 Euro) und implantierbare Defibrillatoren (ab 15.500 Euro) halten geschädigte Herzen mit elektrischen Impulsen auf Trab.

  • Adlerscharf sehen

    Exakt geschliffene Kunststofflinsen (je 3.000 Euro) heilen den grauen Star. So erreichen viele Patienten anschließend 180 Prozent Sehschärfe.

  • Umrisse erkennen

    Blinde können mit einem Computerchip (73.000 Euro ohne Operation), der in die Netzhaut implantiert wird, wieder sehen. Eine Kamerabrille überträgt Bilder zum Chip, der das Signal an den Sehnerv weiterleitet. Der Akku am Gürtel liefert den Strom.

Die Schar der entscheidenden Köpfe, die Patente an der neuen Technik angemeldet haben, ist übersichtlich: Es sind die Französin Emmanuelle Charpentier und die US-Amerikanerin Jennifer Doudna, die gemeinsam im August 2012 den weltweit ersten Fachartikel veröffentlichten, wie sich der aus Bakterien stammende Molekülkomplex Crispr-Cas9 als Werkzeug nutzen ließe. Mit dieser Genschere zerschneiden Bakterien das Erbgut von Viren, von denen sie angegriffen werden. Mit ihrer Idee traten die mittlerweile in Berlin am Max-Planck-Institut für Infektionsbiologie forschende Charpentier und die Biochemikerin Doudna von der University of California in Berkeley eine Lawine von Forschungsarbeiten los. Der dritte im Bunde ist Feng Zhang vom Broad Institute im amerikanischen Cambridge.

Anzeige

1 Kommentar zu Crispr-Cas9: Wie die Gen-Schere unsere Welt verändern soll

  • Für den Bereich der Medizin, um etwa Erbkrankheiten oder Krebs zu behandeln, halte ich die Genforschung für sinnvoll.

    Im Bereich der Landwirtschaft lehne ich Gen-Manipulation ab. Niemand weiß, wie sich das auf Dauer im menschlichen Körper auswirkt und auf die Fauna und Flora. Zudem gibt es bereits eine immense Überproduktion. Eine Rechnung mit X-Unbekannten, was aber Spekulanten und Großkonzerne anscheinend billigend in Kauf nehmen. Nur aus der Gier heraus. Das war noch nie gut.

Alle Kommentare lesen
Deutsche Unternehmerbörse - www.dub.de
DAS PORTAL FÜR FIRMENVERKÄUFE
– Provisionsfrei, unabhängig, neutral –
Angebote Gesuche




.

Zur Startseite
-0%1%2%3%4%5%6%7%8%9%10%11%12%13%14%15%16%17%18%19%20%21%22%23%24%25%26%27%28%29%30%31%32%33%34%35%36%37%38%39%40%41%42%43%44%45%46%47%48%49%50%51%52%53%54%55%56%57%58%59%60%61%62%63%64%65%66%67%68%69%70%71%72%73%74%75%76%77%78%79%80%81%82%83%84%85%86%87%88%89%90%91%92%93%94%95%96%97%98%99%100%