Sternstunde

Sternbeben hilft bei der Analyse neuer Exoplaneten

Meike Lorenzen
Meike Lorenzen Ehem. Redakteurin Technologie WirtschaftsWoche Online

Erstmals haben deutsche Wissenschaftler Daten vom Beben auf einem fernen Stern ausgenutzt, und so die Masse eines Himmelskörpers bestimmen können. Ein Meilenstein in der Forschung.

Der Blick des CoRoT-Weltraumteleskops auf den Exoplaneten, der den auf Stern HD52265 umkreist. Grafik: Mark A.Garlick Quelle: Presse

Erstmals haben Forscher mit Hilfe sogenannter asteroseismologischer Daten eines Weltraumteleskops die innere Rotation eines sonnenähnlichen Sterns bestimmen können - und dabei auch noch einen Exoplaneten charakterisiert.

Die Suche nach Exoplaneten ist gerade ein ganz heißes Thema in der Weltraumforschung. Schon seit einer Weile sind die Astronomen von dem Ehrgeiz gepackt, mehr über die exosolaren Planeten außerhalb unseres Sonnensystems zu erfahren. Denn während in unserem Sonnensystem bisher kein Planet gefunden werden konnte, der wie die Erde Leben ermöglicht, hofft man auf eine zweite Erde in einem anderen System. Dabei wird vor allem von der Erde aus gearbeitet, denn die neuen Teleskope schauen weiter als je zuvor ins All – und vor allem genauer hin. Gesichtet werden in der Regel erst die Sterne, ehe dann analysiert wird, ob in einem adäquaten Abstand zum Feuerball auch ein Planet zu entdecken ist.

Eine Gruppe von Wissenschaftlern unter Leitung des Max-Planck-Institutes für Sonnensystemforschung (MPS) und der Universität Göttingen hat in diesem Fall den Stern HD52265 genau untersucht. Er befindet sich mehr als 90 Lichtjahre entfernt im Sternbild Einhorn, östlich des Orion. Einen Himmelskörper, der den Stern umkreist, hatte die Forschung schon vor zehn Jahren erfasst – bisher jedoch als Braunen Zwerg charakterisiert. Braune Zwerge nehmen aufgrund ihrer Masse eine Sonderstellung zwischen Planeten und Sternen ein. Nun ist klar, dass der Zwerg tatsächlich ein sehr massearmer Planet ist.  

50 Jahre Weltraumforschung
La Silla ObservatoriumDie Sterne rotieren während einer Nacht um den südlichen Himmelspol am La Silla-Observatorium der ESO im Norden Chiles. Die diffusen Bereiche auf der rechten Seite des Bildes sind die Magellanschen Wolken, zwei kleinen Begleitgalaxien unserer Milchstraße. Die im Vordergrund sichtbare Kuppel beherbergt das 3,6-Meter-Teleskop mit dem HARPS-Instrument, dass dem zur Zeit erfolgreichsten Exoplanetenjäger der Welt. Das kastenförmige Gebäude unten rechts beherbergt das 0,25-Meter-TAROT-Teleskop, das so konstruiert ist, dass es besonders schnell auf Gammastrahlenausbrüche reagieren kann. Weitere Teleskope auf La Silla sind das 2,2-Meter-MPG/ESO Teleskop und das 3,6-Meter-New Technology Telescope, das erste Teleskop an dem aktive Optik zum Einsatz kam und somit Vorläufer aller modernen Großteleskope. La Silla war das erste Observatorium der ESO und ist nach wie vor eines der führenden Observatorien auf der Südhalbkugel. Quelle: Pressebild
ALMADer ESO-Fotobotschafter Babak Tafreshi hat dieses bemerkenswerte Bild der Antennen des Atacama Large Millimeter/submillimeter Arrays (ALMA) vor der Kulisse der prächtigen Milchstraße aufgenommen. ALMA ist eine internationale Einrichtung, die gemeinsam von Europa, Nordamerika und Ostasien in Zusammenarbeit mit der Republik Chile getragen wird. Bei Entwicklung, Aufbau und Betrieb des Observatoriums ist die ESO zuständig für den europäischen Beitrag, das National Astronomical Observatory of Japan für Ostasien und das National Radio Astronomy Observatory für den nordamerikanischen Beitrag. Das Joint ALMA Observatory übernimmt die übergreifende Projektleitung für den Aufbau, die Inbetriebnahme und den Beobachtungsbetrieb von ALMA. Die Detailfülle in diesem Foto bestätigt die unübertroffenen Beobachtungsbedingungen für die Astronomie auf dem 5000 Meter hohen Chajnantor-Plateau in Chiles Atacama-Region. Die Aufnahme zeigt die Sternbilder Carina (der Schiffskiel) und Vela (das Segel). Die dunklen, schmalen Staubwolken der Milchstraße erstrecken sich von der Mitte links oben zur Mitte rechts unten. Der helle, orangefarbene Stern links oben ist Suhail im Sternbild Vela, der ähnlich orange gefärbte Stern in der oberen Bildmitte ist Avior im Sternbild Carina. Nahe dieser Sterne formen drei blaue Sterne ein „L“: die zwei linken davon gehören zum Segel, der rechte zum Schiffskiel. Genau in der Bildmitte zwischen diesen Sternen leuchtet der rosafarbene Carinanebel (eso1208). Quelle: Pressebild
Die MilchstraßeDie zentralen Bereiche unserer Heimatgalaxie, der Milchstraße, beobachtet im nahen Infrarot mit dem NACO-Instrument am Very Large Telescope der ESO. Da sie seit mehr als 16 Jahren die Bewegungen der Sterne in unmittelbarer Umgebung verfolgen, konnten Astronomen die Masse des Schwarzen Lochs bestimmen, das sich dort verbirgt. Quelle: Pressebild
 Das Handout der Zeitschrift «NATURE» zeigt eine Illustration eines schwarzen Loches in einem Kugelsternhaufen. Quelle: dpa
PferdekopfnebelDieses Gebilde nennen die Astronomen den Pferdekopfnebel. Die Farbkomposition des Nebels und seiner unmittelbaren Umgebung basiert auf drei Einzelbelichtungen im sichtbaren Licht, die am 1. Februar 2000 mit dem FORS2-Instrument am 8,2-Meter Kueyen-Teleskop auf dem Paranal aufgenommen und dem wissenschaftlichen Archiv des VLTs entnommen wurden. Quelle: Pressebild
WeihnachtsbaumhaufenDiese Farbaufnahme zeigt eine Himmelsregion namens NGC 2264, die die leuchtend blauen Sterne des Weihnachtsbaumhaufens und den Konusnebel enthält. Aufgenommen wurde das Bild durch vier verschiedene Filter (B, V, R und H-alpha) mit dem Wide Field Imager am La Silla Observatorium der ESO in 2400 Metern Höhe. Der abgebildete Nebel hat einen Durchmesser von etwa 30 Lichtjahren. Quelle: Pressebild
OrionnebelAuch diese Großfeldansicht des Orionnebels (Messier 42) entstand in Chile. Das VISTA-Infrarotdurchmusterungsteleskop am Paranal-Observatorium der ESO zeichnete den Nebel auf, der sich in einer Entfernung von 1350 Lichtjahren von der Erde befindet. Mit dem riesigen Gesichtsfeld des neuen Teleskops lässt sich der gesamte Nebel zusammen mit seiner Umgebung in einer einzigen Aufnahme abbilden. Beobachtungen im Infraroten ermöglichen es, auch in die Bereiche des Nebels vorzudringen, die sonst von Staubwolken verdeckt sind, und machen die aktiven, jungen Sterne sichtbar, die sich darin verbergen. Quelle: Pressebild

Zu dem Ergebnis konnten die Forscher kommen, weil sie sich erstmals Methoden der Asteroseismologie bedient haben, um die Masse eines Körpers einzugrenzen. Seismologen beschäftigen sich mit der Erforschung von Erdbeben. Asteroseismologen erforschen Sternbeben, also die inneren Schwingungen von Sternen. Die Forschergruppe unter Leitung von Laurent Gizon, Direktor am MPS und Professor an der Universität Göttingen, verwendete für ihre Studie Daten des Weltraumteleskops CoRoT. Zwischen November 2008 und März 2009 richtete das Teleskop 117 Tage lang seinen Blick ohne Pause auf Stern HD52265. Solch lange und ununterbrochenen Beobachtungszeiten sind entscheidend, um die Schwingungsfrequenzen eines Sterns mit der notwendigen Genauigkeit bestimmen zu können.

Wie Stern-Schwingungen entstehen

In Sternen, die der Sonne ähneln, steigt heißes Plasma im Innern auf, kühlt ab und sinkt wieder herab. Dieser Vorgang erzeugt Druck- beziehungsweise Schallwellen, die im Inneren des Sterns eingeschlossen sind. Sie sorgen dafür, dass der Stern wie eine Glocke vibriert. Die Asteroseismologie nutzt die Schwingungen an der Oberfläche, um unter anderem die Rotation im Inneren von Sternen zu bestimmen.

"Die Drehung des Sterns hinterlässt winzige Spuren in den Frequenzen, mit denen er schwingt", erklärt Gizon. Druckwellen, die sich in Richtung der Rotationsbewegung ausbreiten, sind schneller als solche, die sich in entgegengesetzte Richtung bewegen. Dies führt zu Unterschieden in den Schwingungsfrequenzen, die im hypothetischen Fall eines nicht-rotierenden Sterns nicht vorhanden wären. Die Sichtbarkeit der einzelnen Schwingungen hängt zudem vom Winkel ab, unter dem der Stern betrachtet wird.

Inhalt
Artikel auf einer Seite lesen
© Handelsblatt GmbH – Alle Rechte vorbehalten. Nutzungsrechte erwerben?
Zur Startseite
-0%1%2%3%4%5%6%7%8%9%10%11%12%13%14%15%16%17%18%19%20%21%22%23%24%25%26%27%28%29%30%31%32%33%34%35%36%37%38%39%40%41%42%43%44%45%46%47%48%49%50%51%52%53%54%55%56%57%58%59%60%61%62%63%64%65%66%67%68%69%70%71%72%73%74%75%76%77%78%79%80%81%82%83%84%85%86%87%88%89%90%91%92%93%94%95%96%97%98%99%100%